Exercise 30

Solve the telegraph equation in Exercise 29 with $V(x, 0)=0$ for
(a) the Kelvin ideal cable line $(L=0=G)$ with the boundary data

$$
V(0, t)=V_{0}=\text { const., } V(x, t) \rightarrow 0 \text { as } x \rightarrow \infty \text { for } t>0 .
$$

(b) the noninductive leaky cable ($L=0$) with the boundary conditions
$V(0, t)=H(t)$ and $V(x, t) \rightarrow 0$ as $x \rightarrow \infty$ for $t>0$.

Solution

Part (a)

When $L=0$ and $G=0$, the telegraph equation reduces to

$$
-V_{x x}+R C V_{t}=0 .
$$

Solving for V_{t} gives

$$
V_{t}=\frac{1}{R C} V_{x x} .
$$

Since we're given an initial condition and $t>0$, this PDE can be solved with the Laplace transform. It is defined as

$$
\mathcal{L}\{V(x, t)\}=\bar{V}(x, s)=\int_{0}^{\infty} e^{-s t} V(x, t) d t
$$

which means the derivatives of V with respect to x and t transform as follows.

$$
\begin{aligned}
\mathcal{L}\left\{\frac{\partial^{n} V}{\partial x^{n}}\right\} & =\frac{d^{n} \bar{V}}{d t^{n}} \\
\mathcal{L}\left\{\frac{\partial V}{\partial t}\right\} & =s \bar{V}(x, s)-V(x, 0)
\end{aligned}
$$

Take the Laplace transform of both sides of the PDE.

$$
\mathcal{L}\left\{V_{t}\right\}=\mathcal{L}\left\{\frac{1}{R C} V_{x x}\right\}
$$

The Laplace transform is a linear operator, so the constant can be pulled out in front.

$$
\mathcal{L}\left\{V_{t}\right\}=\frac{1}{R C} \mathcal{L}\left\{V_{x x}\right\}
$$

Use the relations above to transform the partial derivatives.

$$
s \bar{V}(x, s)-V(x, 0)=\frac{1}{R C} \frac{d^{2} \bar{V}}{d x^{2}}
$$

Since $V(x, 0)=0$, we just have (after multiplying both sides by $R C$)

$$
\frac{d^{2} \bar{V}}{d x^{2}}=s R C \bar{V}
$$

The PDE has thus been reduced to an ODE whose solution can be written in terms of exponential functions.

$$
\bar{V}(x, s)=A(s) e^{\sqrt{s R C} x}+B(s) e^{-\sqrt{s R C} x}
$$

In order for the condition, $V(x, t) \rightarrow 0$ as $x \rightarrow \infty$, to be satisfied, we require that $A(s)=0$.

$$
\bar{V}(x, s)=B(s) e^{-\sqrt{s R C} x}
$$

To determine $B(s)$, we have to make use of the provided boundary condition, $V(0, t)=V_{0}$. Take the Laplace transform of both sides of it.

$$
\begin{aligned}
V(0, t)=V_{0} \quad \rightarrow \quad \mathcal{L}\{V(0, t)\} & =\mathcal{L}\left\{V_{0}\right\} \\
\bar{V}(0, s) & =\frac{V_{0}}{s}
\end{aligned}
$$

Plugging in $x=0$ into the formula for $\bar{V}(x, s)$, we have

$$
\bar{V}(0, s)=B(s)=\frac{V_{0}}{s} .
$$

Thus,

$$
\bar{V}(x, s)=\frac{V_{0}}{s} e^{-\sqrt{s R C} x} .
$$

Now that we have $\bar{V}(x, s)$, all that's left to do is to take the inverse Laplace transform of it.

$$
V(x, t)=\mathcal{L}^{-1}\{\bar{V}(x, s)\}=\mathcal{L}^{-1}\left\{\frac{V_{0}}{s} e^{-\sqrt{s R C} x}\right\}
$$

Bring V_{0} in front of the operator, and bring x under the square root.

$$
V(x, t)=V_{0} \mathcal{L}^{-1}\left\{\frac{1}{s} e^{-\sqrt{R C x^{2} s}}\right\}
$$

This is a transform that can be looked up in a table.

$$
V(x, t)=V_{0} \operatorname{erfc}\left(\frac{\sqrt{R C x^{2}}}{2 \sqrt{t}}\right)
$$

where erfc is the complementary error function, a known special function, defined as

$$
\operatorname{erfc} z=\frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-r^{2}} d r
$$

Therefore,

$$
V(x, t)=V_{0} \operatorname{erfc}\left(\frac{x}{2} \sqrt{\frac{R C}{t}}\right)
$$

Part (b)

When $L=0$, the telegraph equation reduces to

$$
-V_{x x}+R C V_{t}+R G V=0 .
$$

This PDE is first-order in the t variable, so we can use an integrating factor to simplify it. Divide both sides by $R C$.

$$
-\frac{1}{R C} V_{x x}+V_{t}+\frac{G}{C} V=0
$$

Multiply both sides by the integrating factor,

$$
I=e^{\int^{t} \frac{G}{C} d s}=e^{\frac{G}{C} t}
$$

to get

$$
-\frac{e^{\frac{G}{C} t}}{R C} V_{x x}+e^{\frac{G}{C} t} V_{t}+\frac{G}{C} e^{\frac{G}{C} t} V=0
$$

The last two terms can be written as $\partial / \partial t(I V)$ as a result of the product rule. Also, since we're working with the partial derivatives of V, t is treated as a constant when taking the derivative with respect to x; hence, the exponential function can be brought inside the second derivative term.

$$
-\frac{1}{R C} \frac{\partial^{2}}{\partial x^{2}}\left(e^{\frac{G}{C} t} V\right)+\frac{\partial}{\partial t}\left(e^{\frac{G}{C} t} V\right)=0
$$

Make the substitution,

$$
W(x, t)=e^{\frac{G}{C} t} V(x, t),
$$

so that the PDE simplifies to

$$
-\frac{1}{R C} W_{x x}+W_{t}=0,
$$

which is the same one we solved in part (a). Taking the Laplace transform of both sides and solving the resulting ODE gives us

$$
\bar{W}(x, s)=A(s) e^{\sqrt{R C s} x}+B(s) e^{-\sqrt{R C} x} .
$$

In order for the condition, $V(x, t) \rightarrow 0$ as $x \rightarrow \infty$, to be satisfied, we require that $A(s)=0$.

$$
\bar{W}(x, s)=B(s) e^{-\sqrt{s R C} x}
$$

To determine $B(s)$, we have to make use of the provided boundary condition, $V(0, t)=H(t)$. Write $W(0, t)$ in terms of it and take the Laplace transform of both sides.

$$
\begin{aligned}
W(0, t)=e^{\frac{G}{C} t} V(0, t)=e^{\frac{G}{C} t} H(t) \quad \rightarrow \quad \mathcal{L}\{W(0, t)\} & =\mathcal{L}\left\{e^{\frac{G}{C} t} H(t)\right\} \\
\bar{W}(0, s) & =\frac{1}{s-\frac{G}{C}}
\end{aligned}
$$

Plugging in $x=0$ into the formula for $\bar{W}(x, s)$, we have

$$
\bar{W}(0, s)=B(s)=\frac{1}{s-\frac{G}{C}} .
$$

Thus,

$$
\bar{W}(x, s)=\frac{1}{s-\frac{G}{C}} e^{-\sqrt{s R C} x} .
$$

Now that we have $\bar{W}(x, s)$, we can change back to $W(x, t)$ by taking the inverse Laplace transform of it. Because we're taking the inverse Laplace transform of a product of functions, we can use the convolution theorem, which says

$$
\mathcal{L}^{-1}\{F(s) G(s)\}=\int_{0}^{t} f(t-\tau) g(\tau) d \tau=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

The inverse Laplace transform of each individual function is

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{1}{s-\frac{G}{C}}\right\} & =e^{\frac{G}{C} t} \\
\mathcal{L}^{-1}\left\{e^{-\sqrt{s R C} x}\right\} & =\frac{x}{2} \sqrt{\frac{R C}{\pi t^{3}}} e^{-\frac{R C x^{2}}{4 t}},
\end{aligned}
$$

so we have

$$
W(x, t)=\int_{0}^{t} e^{\frac{G}{C}(t-\tau)} \frac{x}{2} \sqrt{\frac{R C}{\pi \tau^{3}}} e^{-\frac{R C x^{2}}{4 \tau}} d \tau .
$$

Change back to $V(x, t)$ now.

$$
e^{\frac{G}{C} t} V(x, t)=e^{\frac{G}{C} t} \int_{0}^{t} e^{-\frac{G}{C} \tau} \frac{x}{2} \sqrt{\frac{R C}{\pi \tau^{3}}} e^{-\frac{R C x^{2}}{4 \tau}} d \tau
$$

Cancel $e^{\frac{G}{C} t}$ from both sides to obtain

$$
V(x, t)=\int_{0}^{t} e^{-\frac{G}{C} \tau} \frac{x}{2} \sqrt{\frac{R C}{\pi \tau^{3}}} e^{-\frac{R C x^{2}}{4 \tau}} d \tau .
$$

Pull the constants out in front and combine the exponential functions to obtain the final result.

$$
V(x, t)=\frac{x}{2} \sqrt{\frac{R C}{\pi}} \int_{0}^{t} \frac{1}{\tau^{3 / 2}} e^{-\left(\frac{G}{C} \tau+\frac{R C x^{2}}{4 \tau}\right)} d \tau
$$

This answer is in disagreement with the answer at the back of the book. Interestingly, the answer there,

$$
V(x, t)=\frac{1}{2} e^{-x \sqrt{b}} \operatorname{erfc}\left(\frac{x}{2} \sqrt{\frac{a}{t}}+\sqrt{\frac{b t}{a}}\right)+\frac{1}{2} e^{-x \sqrt{b}} \operatorname{erfc}\left(\frac{x}{2} \sqrt{\frac{a}{t}}-\sqrt{\frac{b t}{a}}\right)
$$

does not satisfy the PDE. There must be a typo somewhere.

