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Exercise 30

Solve the telegraph equation in Exercise 29 with V (x, 0) = 0 for

(a) the Kelvin ideal cable line (L = 0 = G) with the boundary data
V (0, t) = V0 = const., V (x, t)→ 0 as x→∞ for t > 0.

(b) the noninductive leaky cable (L = 0) with the boundary conditions
V (0, t) = H(t) and V (x, t)→ 0 as x→∞ for t > 0.

Solution

Part (a)

When L = 0 and G = 0, the telegraph equation reduces to

−Vxx +RCVt = 0.

Solving for Vt gives

Vt =
1

RC
Vxx.

Since we’re given an initial condition and t > 0, this PDE can be solved with the Laplace
transform. It is defined as

L{V (x, t)} = V (x, s) =

ˆ ∞
0

e−stV (x, t) dt,

which means the derivatives of V with respect to x and t transform as follows.

L
{
∂nV

∂xn

}
=
dnV

dtn

L
{
∂V

∂t

}
= sV (x, s)− V (x, 0)

Take the Laplace transform of both sides of the PDE.

L{Vt} = L
{

1

RC
Vxx

}
The Laplace transform is a linear operator, so the constant can be pulled out in front.

L{Vt} =
1

RC
L{Vxx}

Use the relations above to transform the partial derivatives.

sV (x, s)− V (x, 0) =
1

RC

d2V

dx2

Since V (x, 0) = 0, we just have (after multiplying both sides by RC)

d2V

dx2
= sRCV.
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The PDE has thus been reduced to an ODE whose solution can be written in terms of
exponential functions.

V (x, s) = A(s)e
√
sRCx +B(s)e−

√
sRCx

In order for the condition, V (x, t)→ 0 as x→∞, to be satisfied, we require that A(s) = 0.

V (x, s) = B(s)e−
√
sRCx

To determine B(s), we have to make use of the provided boundary condition, V (0, t) = V0. Take
the Laplace transform of both sides of it.

V (0, t) = V0 → L{V (0, t)} = L{V0}

V (0, s) =
V0
s

Plugging in x = 0 into the formula for V (x, s), we have

V (0, s) = B(s) =
V0
s
.

Thus,

V (x, s) =
V0
s
e−
√
sRCx.

Now that we have V (x, s), all that’s left to do is to take the inverse Laplace transform of it.

V (x, t) = L−1{V (x, s)} = L−1
{
V0
s
e−
√
sRCx

}
Bring V0 in front of the operator, and bring x under the square root.

V (x, t) = V0 L−1
{
1

s
e−
√
RCx2s

}
This is a transform that can be looked up in a table.

V (x, t) = V0 erfc

(√
RCx2

2
√
t

)
,

where erfc is the complementary error function, a known special function, defined as

erfc z =
2√
π

ˆ ∞
z

e−r
2
dr.

Therefore,

V (x, t) = V0 erfc

(
x

2

√
RC

t

)
.
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Part (b)

When L = 0, the telegraph equation reduces to

−Vxx +RCVt +RGV = 0.

This PDE is first-order in the t variable, so we can use an integrating factor to simplify it. Divide
both sides by RC.

− 1

RC
Vxx + Vt +

G

C
V = 0

Multiply both sides by the integrating factor,

I = e
´ t G

C
ds = e

G
C
t,

to get

−e
G
C
t

RC
Vxx + e

G
C
tVt +

G

C
e
G
C
tV = 0.

The last two terms can be written as ∂/∂t(IV ) as a result of the product rule. Also, since we’re
working with the partial derivatives of V , t is treated as a constant when taking the derivative
with respect to x; hence, the exponential function can be brought inside the second derivative
term.

− 1

RC

∂2

∂x2

(
e
G
C
tV
)
+
∂

∂t

(
e
G
C
tV
)
= 0

Make the substitution,

W (x, t) = e
G
C
tV (x, t),

so that the PDE simplifies to

− 1

RC
Wxx +Wt = 0,

which is the same one we solved in part (a). Taking the Laplace transform of both sides and
solving the resulting ODE gives us

W(x, s) = A(s)e
√
RCsx +B(s)e−

√
RCsx.

In order for the condition, V (x, t)→ 0 as x→∞, to be satisfied, we require that A(s) = 0.

W(x, s) = B(s)e−
√
sRCx

To determine B(s), we have to make use of the provided boundary condition, V (0, t) = H(t).
Write W (0, t) in terms of it and take the Laplace transform of both sides.

W (0, t) = e
G
C
tV (0, t) = e

G
C
tH(t) → L{W (0, t)} = L

{
e
G
C
tH(t)

}
W(0, s) =

1

s− G
C

Plugging in x = 0 into the formula forW(x, s), we have

W(0, s) = B(s) =
1

s− G
C

.
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Thus,

W(x, s) =
1

s− G
C

e−
√
sRCx.

Now that we haveW(x, s), we can change back to W (x, t) by taking the inverse Laplace transform
of it. Because we’re taking the inverse Laplace transform of a product of functions, we can use
the convolution theorem, which says

L−1{F (s)G(s)} =
ˆ t

0
f(t− τ)g(τ) dτ =

ˆ t

0
f(τ)g(t− τ) dτ.

The inverse Laplace transform of each individual function is

L−1
{

1

s− G
C

}
= e

G
C
t

L−1
{
e−
√
sRCx

}
=
x

2

√
RC

πt3
e−

RCx2

4t ,

so we have

W (x, t) =

ˆ t

0
e
G
C
(t−τ)x

2

√
RC

πτ3
e−

RCx2

4τ dτ.

Change back to V (x, t) now.

e
G
C
tV (x, t) = e

G
C
t

ˆ t

0
e−

G
C
τ x

2

√
RC

πτ3
e−

RCx2

4τ dτ

Cancel e
G
C
t from both sides to obtain

V (x, t) =

ˆ t

0
e−

G
C
τ x

2

√
RC

πτ3
e−

RCx2

4τ dτ.

Pull the constants out in front and combine the exponential functions to obtain the final result.

V (x, t) =
x

2

√
RC

π

ˆ t

0

1

τ3/2
e
−
(
G
C
τ+RCx2

4τ

)
dτ

This answer is in disagreement with the answer at the back of the book. Interestingly, the answer
there,

V (x, t) =
1

2
e−x
√
b erfc

(
x

2

√
a

t
+

√
bt

a

)
+

1

2
e−x
√
b erfc

(
x

2

√
a

t
−
√
bt

a

)
,

does not satisfy the PDE. There must be a typo somewhere.
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